Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Restorative Dentistry & Endodontics ; : 188-199, 2017.
Article in English | WPRIM | ID: wpr-23638

ABSTRACT

OBJECTIVES: This in vitro study evaluated the effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin. MATERIALS AND METHODS: Flat coronal dentin surfaces were prepared in 120 extracted human molars. Teeth were randomly divided into 5 groups (n = 24) according to 5 different surface pre-treatments: No pre-treatment (control); 1M carbodiimide (EDC); 0.1% epigallocatechin-3-gallate (EGCG); 2% minocycline (MI); 10% sodium ascorbate (SA). After surface pre-treatment, adhesive (Adper Single Bond 2 [SB], 3M ESPE) was applied. Composite was applied into transparent plastic tubes (2.5 mm in diameter), which was placed over the bonded dentin surface. From each group, 10 samples were subjected to shear bond strength (SBS) evaluation at 24 hours (immediate) and remaining 10 samples were tested after 6 months (delayed). Additionally, 4 samples per group were subjected to scanning electron microscopic analysis for observation of resin-dentin interface. The data were statistically analysed with Shaperio‑Wilk W test, 2-way analysis of variance (ANOVA), and post hoc Tukey's test. RESULTS: At 24 hours, SBS of all surface pre-treatment groups were comparable with the control group, with significant differences found between EDC and SA groups only (p = 0.009). After 6 months storage, EDC, EGCG, and MI pre-treatments preserved the resin-dentin bond strength with no significant fall. CONCLUSIONS: Dentin pre-treatment with all the dentin biomodifiers except SA resulted in significant preservation of resin-dentin bond over 6 months storage period, without negatively affecting the immediate bond strength of the etch and rinse adhesive tested.


Subject(s)
Humans , Adhesives , Ascorbic Acid , Dentin , Ethyldimethylaminopropyl Carbodiimide , In Vitro Techniques , Minocycline , Molar , Plastics , Shear Strength , Tooth
2.
Rev. bras. cir. cardiovasc ; 30(2): 159-163, Mar-Apr/2015. tab, graf
Article in English | LILACS | ID: lil-748942

ABSTRACT

Abstract Introduction: Intravascular coronary stenting has been used in the treatment of coronary artery disease (CAD), with a major limitation of in-stent restenosis (ISR). The 316 stainless steel has been widely used for coronary stents. In this study, we developed a novel coating method to reduce ISR by simultaneously coating vascular endothelial growth factor (VEGF) and anti-CD34 antibody on 316L stainless steel. Methods: Round 316L stainless steel sheets in the D-H group were polymerized with compounds generated from condensation reaction of dopamine and heparin using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS). Sixteen sheets from the D-H group were further immersed into 1ug/ml VEGF165 and 3mg/ml heparin sodium one after another for 10 times, and named as the D-(H-V)10 group. Eight sheets from the D-(H-V)10 group were coated with anti-CD34 antibody and termed as the D-(H-V)10-A group. Immunofluorescence assay and ELISA were used to evaluate whether the 316L stainless steel disks were successfully coated with VEGF and anti-CD34 antibody. Results: The results of immunofluorescence assay and ELISA showed that VEGF could be detected in the D-(H-V)10 and D-(H-V)10-A group, suggesting the steel sheets were successfully covered with VEGF. Anti-CD34 antibody could only be observed in the D-(H-V)10-A group, which was the only group coated with CD34 antibody. Both results suggested that the 316L stainless steel sheets were successfully coated with VEGF and anti-CD34 antibody. Conclusion: Our study developed a method to simultaneously coat VEGF and anti-CD34 antibody to stainless metal steel. This research serves as a fundamental role for a novel coating strategy. .


Resumo Introdução: O stent coronário intravascular tem sido utilizado no tratamento de doença arterial coronária, com uma maior limitação de restenose intra-stent (RIS). O aço inoxidável 316 tem sido amplamente utilizado para stents. Neste estudo, foi desenvolvido um novo método de revestimento para reduzir a RIS para revestir simultaneamente o fator de crescimento endotelial vascular (VEGF) e anti-CD34 em aço inoxidável 316L. Métodos: Placas de aço inoxidável 316L redondas no grupo DH foram polimerizadas com compostos gerados a partir da reacção de condensação de dopamina e heparina utilizando N- (3-dimetilaminopropil) -N'-etilcarbodiimida (EDC) e N-hidroxissuccinimida (NHS). Dezesseis folhas a partir do grupo DH foram ainda imersas em 1 ug/ml de VEGF 165 e 3 mg/ml de heparina sódica, um após outro por 10 vezes, sendo denominado como o grupo D-(HV)10. Oito folhas de D-(HV)10 foram revestidas com anticorpo anti-CD34 e denominado como grupo D-(HV)10-A. Testes de imunofluorescência e ELISA foram usados para avaliar se os discos de aço inoxidável 316L foram revestidos com sucesso com VEGF e anticorpo anti-CD34. Resultados: Os resultados dos testes de imunofluorescência e ELISA mostraram que o VEGF pôde ser detectado nos grupos D-(HV)10 e D-(HV)10-A, evidenciando que as chapas de aço foram cobertas com VEGF com sucesso. O anticorpo anti-CD34 podia apenas ser observado no grupo D-(HV)10-A, o único grupo revestido com anticorpo CD34. Ambos os resultados sugerem que as chapas de aço inoxidável 316L foram revestidas com sucesso com VEGF e anticorpo anti-CD34. Conclusão: Nosso estudo desenvolveu um método para revestir simultaneamente VEGF e anti-CD34 de aço inoxidável. Esta pesquisa tem um papel fundamental para a nova estratégia de revestimento. .


Subject(s)
Humans , /chemistry , /immunology , Coated Materials, Biocompatible/chemistry , Drug-Eluting Stents , Stainless Steel/chemistry , Vascular Endothelial Growth Factor A/chemistry , Coronary Restenosis/prevention & control , Enzyme-Linked Immunosorbent Assay , Ethyldimethylaminopropyl Carbodiimide/chemistry , Fluorescent Antibody Technique , Materials Testing , Reproducibility of Results , Serum Albumin, Bovine , Time Factors
3.
Araraquara; s.n; 2014. 90 p. ilus, tab.
Thesis in Portuguese | LILACS, BBO | ID: biblio-867837

ABSTRACT

Tem sido demonstrado que a carbodiimida (EDC) apresenta notável potencial inibidor de proteases (MMPs) e de melhorar as propriedades mecânicas do colágeno quando aplicada sobre a dentina desmineralizada. Entretanto, não existem informações a respeito de sua ação antimicrobiana sobre microrganismos comumente encontrados em lesões de cárie ou mesmo após a sua remoção. Objetivo: Investigar a atividade antimicrobiana do EDC em diferentes concentrações sobre microrganismos presentes em cavidades cariosas. Métodos: Soluções de EDC foram preparadas e testadas contra S. mutans e sobrinus, L. acidophilus e Candida albicans. Inicialmente, foi utilizado o teste de difusão em ágar, no qual discos de papel filtro foram impregnados com EDC 2, 1, 0,5, 0,3 ou 0,1 mol/L, clorexidina 0,12%, nistatina 1% ou tampão Sorensen pH 6,2 (n=6). Em seguida, foi determinada a concentração inibitória mínima (CIM) e bactericida mínima (CBM) do EDC sobre L. acidophilus em suspensão planctônica (n=9), por meio de turvamento. Por fim, a atividade do EDC (de 0,01 à 2 mol/L) sobre L. acidophilus em biofilme monoespécie foi definida por meio do ensaio de XTT (n=6). Os dados foram submetidos aos testes estatísticos de ANOVA e Tukey ou Mann-Whitney (p<0,05). Resultados: No teste de difusão em ágar, nenhuma atividade antimicrobiana foi observada para EDC nas concentrações de 0,1 e 0,3 mol/L, assim como para o grupo controle. EDC 0,5, 1 e 2 mol/L exerceu efeito antimicrobiano apenas sobre L. acidophilus. A CIM do EDC foi de 0,01 mol/L e a CBM foi de 0,03 mol/L. Todas as concentrações de EDC igual ou superiores a 0,05 mol/L foram capazes de reduzir significantemente o metabolismo do biofilme formado por L. acidophilus. Essa redução variou de 84,2 para 0,05 mol/L até 93,4% para 2 mol/L. Conclusão: O EDC apresentou atividade antimicrobiana apenas contra L. acidophilus reduzindo significantemente o crescimento deste microrganismo quando em suspensão planctônica e o seu metabolismo quando em biofilme monoespécie a partir de 0,05 mol/L


It has been demonstrated that carbodiimide (EDC) is a potent protease inhibitor (MMPs) and is able to improve the mechanical properties of collagen when applied on the demineralized dentin. However, there is no information about its antimicrobial effect on microorganisms commonly found in caries lesions or even after its removal. Objective: To investigate the antimicrobial activity of different concentrations of EDC against microorganisms present in caries lesions. Methods: EDC solutions were prepared and tested against S. mutans and sobrinus, L. acidophilus and Candida albicans. Initially, the agar diffusion test was used, where paper discs were impregnated with 2, 1, 0.5, 0.3 or 0.1 mol/L EDC, 0.12% chlorhexidine, nistatin 1% or Sorensen's buffer pH 6.2 (control) (n=6). Then, the minimum inhibitory (MIC) and bactericide concentrations (MBC) of EDC were determined against L. acidophilus using turbidity. Finally, the growth inhibitory activity of EDC (from 0.01 to 2 mol/L) against L. acidophilus in monoespecies biofilm was defined using the XTT assay (n=6). Data were submitted to ANOVA and Tukey tests or Mann-Whitney (p<0.05). Results: For the agar diffusion test, lack of antimicrobial activity was seen for EDC at 0.1 and 0.3 mol/L, as well as for the control group. 0.5, 1 and 2 mol/L EDC exerted a growth inhibitory effect only against L. acidophilus. The MIC for EDC was set as 0.01 mol/L and the MBC as 0.03 mol/L. Concentrations equal to or greater than 0.05 mol/L were capable of significantly reducing the metabolism of L. acidophilus when in monospecies biofilm. This reduction ranged from 84.2% for 0.05 mol/L to 93.4% for 2 mol/L. Conclusion: EDC exerted antibacterial activity only against L. acidophilus significantly reducing its growth in planktonic suspension and its metabolism in biofilms in the concentration of 0.05 mol/L or higher


Subject(s)
Analysis of Variance , Statistics, Nonparametric , Dental Plaque , Anti-Bacterial Agents , Ethyldimethylaminopropyl Carbodiimide , Lactobacillus acidophilus
4.
Chinese Journal of Biotechnology ; (12): 898-902, 2008.
Article in Chinese | WPRIM | ID: wpr-342819

ABSTRACT

To establish a new immune assay for Penicillic Acid (PA) from Penicillium cyclopium, we studied the synthesis of conjugated complete antigens for penicillic acid. PA was conjugated to bovine serum album (BSA) and ovalbumin (OVA) by 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide hydrochloride (EDC). The artificial antigens PA-BSA and PA-OVA were identified by ultraviolet spectrometric scanning, SDS-PAGE and immunization. Results showed that the absorption peak of conjugation were different from that of the carrier protein alone and of the PA. The conjugated ratio of PA and BSA was 23.2:1 and that of PA and OVA was 10.4:1. Balb/c mice were immunized by the artificial antigen of PA-BSA, with PA-OVA as coating antigen. The average titer of antiserums was more than 12 800 by indirect ELISA. The obtained antigens offered a basis for developing immunoassay method.


Subject(s)
Animals , Mice , Antibodies , Blood , Antigens , Allergy and Immunology , Metabolism , Enzyme-Linked Immunosorbent Assay , Ethyldimethylaminopropyl Carbodiimide , Chemistry , Immunization , Mice, Inbred BALB C , Ovalbumin , Allergy and Immunology , Penicillic Acid , Allergy and Immunology , Metabolism , Penicillium , Allergy and Immunology , Metabolism , Serum Albumin, Bovine , Allergy and Immunology
5.
Journal of Biomedical Engineering ; (6): 476-481, 2004.
Article in Chinese | WPRIM | ID: wpr-291084

ABSTRACT

Today, the blood vessel substitutes are in large demand for coronary and peripheral bypass procedures, and the demand cannot be met by conventional sources. This problem will be solved by applying tissue-engineered blood vessel in clinics. The prefabrication of vascular scaffold will be involved in engineering a blood vessel substitute. Biological tissues are important biomaterials fabricating vascular scaffold which can offer better constructs for adhesion and growth of cells onto synthetic materials. Because of immediate degradation of biological tissues obtained from the abattoir, cadaver or patient and the presence of antigenicity in allogenic or xenogenic tissues, the fresh biological tissues can not directly be preserved and applied. The use and preservation of these natural biomaterials have typically required pre-treatment aimed at (1) reducing the antigenicity of the materials, (2) enhancing the resistance of the materials to enzymatic degradation, (3) stabilizing the structure of the tissues and maintaining their mechanical properties. Physical and chemical methods for the pre-treatment of biological tissues are available. The predominant chemical agents that have been investigated for the pre-treatment of biological tissues for vascular scaffold are glutaraldehyde, polyepoxy compound, carbodiimide, genipin and proanthocyanidin. Typical and particularly promising physical pre-treatment of biological tissues for vascular scaffold is dye-mediated photooxidation. The crosslinking mechanisms of all classes of pre-treatments and the effects of pre-treatments on antigenicity, biostability, mechanical properties, cytoxicity and calcification of treated tissues are described in this article. The advantages and disadvantages of all pre-treatments are also reviewed. The trend of pre-treatment of biological tissues is to investigate and exploit the naturally occurring crosslinking reagent with less cytoxicity. Meanwhile, dye-mediated photooxidation crosslink is also a promising pre-treatment which should be widely applied in vascular scaffold.


Subject(s)
Humans , Biocompatible Materials , Bioprosthesis , Blood Vessel Prosthesis , Cross-Linking Reagents , Ethyldimethylaminopropyl Carbodiimide , Glutaral , Iridoid Glycosides , Iridoids , Materials Testing , Pyrans , Stents , Tissue Engineering
6.
Indian J Biochem Biophys ; 1997 Jun; 34(3): 241-8
Article in English | IMSEAR | ID: sea-28020

ABSTRACT

We have investigated the inhibitory effect of K-crown (18-crown-6 potassium picrate) on photosystem II (PSII)-enriched membrane fragments and O2-evolving core complexes. K-crown at 2-4 microM inhibits about half the control level of O2-evolution activity in both types of PSII samples. Oxygen-evolution studies demonstrated that the ether works by inactivating the centres and not by interfering with antenna function or energy transfer to the reaction centre. K-crown does not disrupt binding of the extrinsic proteins associated with O2 evolution nor complex with bound Ca2+ or Cl- cofactors, but rather it directly inhibits electron transfer after the tetrameric Mn cluster. Fluorescence studies on active and Tris-treated samples showed that K-crown does not prevent artificial donors from transferring electrons to PSII but like DCMU inhibits on the acceptor side after QA, the primary quinone acceptor. However, the ether is a leaky inhibitor and may also act as a weak donor when the Mn cluster is not present. Oxygen-production experiments using silicomolybdate as an artificial acceptor (which accepts from both pheophytin and QB in PSII membranes) demonstrated that the inhibition is at or near the DCMU site.


Subject(s)
Binding Sites , Chlorophyll/metabolism , Electron Transport/drug effects , Ethers, Cyclic/pharmacology , Ethyldimethylaminopropyl Carbodiimide/pharmacology , Kinetics , Light , Light-Harvesting Protein Complexes , Molybdenum/metabolism , Oxygen/metabolism , Photosynthesis/drug effects , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosystem II Protein Complex , Plant Proteins/metabolism , Silicon Compounds/metabolism , Spinacia oleracea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL